摘要

Receptor binding and biological activity properties of human interleukin-1-beta can be dissociated by mutating a single amino acid, arginine 127, to glycine (IL-1-beta(R-->G) [Gehrke et al. (1990) J. Biol. Chem. 265, 5922-5925]. The mechanism underlying the reduced biological activity has been examined by replacing arginine 127 with several other amino acids, followed by determination of biological activity using a T-helper cell proliferation assay. Mutant IL-1-beta proteins containing lysine, glutamic acid, tryptophan, or alanine in place of arginine 127 maintain biological activity. These data strongly suggest that IL-1-beta biological activity is not directly dependent upon the specific properties of charge, hydrophobicity/hydrophilicity, or side-chain group presented by the residue at position 127. Molecular modeling analyses indicate that the structural integrity of the antiparallel beta-strand 1/12 pair is disturbed in the glycine 127 mutant protein. Collapse of beta-strand 1 into a hydrated space between strands 1, 2, and 4 could structurally alter a cleft in IL-1-beta that contains a cluster of highly conserved amino acids, including a key aspartic acid residue [Ju et al. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 2658-2662]. Mutagenesis data and the differential activities of the IL-1-beta(R-->G) and IL-1 receptor antagonist proteins in stimulating early and late gene expression [Conca et al. (1991) J. Biol. Chem. 266, 16265-16268] suggest that multiple receptor-ligand contacts, exclusive of those required for receptor binding, are required for the stimulation of full IL-1 biological activity.

  • 出版日期1992-7-28

全文