摘要

Low concentrations of carbon nanotubes (CNTs) promoted the number of nerve growth factor (NGF)-treated neurons with neurite outgrowth by activating extracellular signal-regulated kinase (ERK), even when MEK inhibitor was added to the neuron culture medium. We speculated that CNTs may activate ERK through the phospholipase C (PLC) signaling pathway independent of the Ras/Raf/MEK cascade involved in the ERK signaling pathway. CNTs enhanced phosphorylation of PLC-gamma 1 in NGF-treated neurons but failed to increase the number and length of neurites of NGF-treated neurons with neurite outgrowth when a PLC inhibitor, an inositol triphosphate receptor (IP3R) inhibitor, or an inhibitor of protein kinase C (PKC) in the PLC signaling pathway were added to the neuron culture medium. Furthermore, intracellular Ca++ levels of cells treated with CNTs NGF were higher than those of cells treated with NGF alone. Although the combination of CNTs and NGF increased the concentration of phosphorylated ERK (p-ERK) in MEK inhibitor-treated neurons, CNTs did not induce phosphorylation of ERK in PLC inhibitor-treated neurons. These data suggest that PKC in the PLC signaling pathway may activate ERK independent of the Ras/Raf/MEK cascade. In summary, we identified a role of PLC signaling in mediating neurite outgrowth of NGF-treated neurons in the presence of CNTs.

  • 出版日期2013-8