摘要

Whether visceral organ cross-sensitization is involved in endometriosis-associated pain remains elusive. Previous studies have shown that visceral noxious stimuli may trigger a cascade of signal transductions in the rostral ventromedial medulla (RVM) via the spinal dorsal column (DC) pathway and the RVM plays a critical role in the descending control of visceral nociception. In the current study, we hypothesized that the p38 mitogen-activated protein kinase (MAPK) activation in the RVM by noxious visceral inputs from ectopic growths via the DC was involved in the development of pelvic organ cross-sensitization in established endometriosis. A rat model of experimental endometriosis was established. To examine ectopic growths-to-colon cross-sensitization, graded colorectal distention (CRD) was performed and abdominal withdrawal reflex (AWR) scores were recorded in female rats at 8 weeks after the uterine or fat (control) auto-transplantation. Western blot study was carried out to examine the phosphorylated form and the total level of p38 MAPK protein in the RVM. Our results showed that lesions of bilateral DCs immediately following uterine or fat auto-transplantation in female rats significantly attenuated the later development of ectopic growths-to-colon cross-sensitization and the increased p38 MAPK activation in the RVM, as compared to sham DC lesions. Furthermore, intra-RVM microinjection of a p38 MAPK inhibitor (SB 203580), but not vehicle, in female rats with established endometriosis significantly attenuated ectopic growths-to-colon cross-sensitization and the increased activation of p38 MAPK in the RVM. These findings suggest that the noxious inputs from ectopic growths may activate p38 MAPK in the RVM via the DC, which may contribute to the development of ectopic growths-to-colon cross-sensitization in established endometriosis.