摘要

The objective of this study was to test the effectiveness of mapping the canopies of Firmiana danxiaensis (FD), a rare and endangered plant species in China, from remotely sensed images acquired by a customized imaging system mounted on an unmanned aerial vehicle (UAV). The work was conducted in an experiment site (approximately 10 km(2)) at the foot of Danxia Mountain in Guangdong Province, China. The study was conducted as an experimental task for a to-be-launched large-scale FD surveying on Danxia Mountain (about 200 km(2) in area) by remote sensing on UAV platforms. First, field-based spectra were collected through hand-held hyperspectral spectroradiometer and then analyzed to help design a classification schema which was capable of differentiating the targeted plant species in the study site. Second, remote-sensed images for the experiment site were acquired and calibrated through a variety of preprocessing steps. Orthoimages and a digital surface model (DSM) were generated as input data from the calibrated UAV images. The spectra and geometry features were used to segment the preprocessed UAV imagery into homogeneous patches. Lastly, a hierarchical classification, combined with a support vector machine (SVM), was proposed to identify FD canopies from the segmented patches. The effectiveness of the classification was evaluated by on-site GPS recordings. The result illustrated that the proposed hierarchical classification schema with a SVM classifier on the remote sensing imagery collected by the imaging system on UAV provided a promising method for mapping of the spatial distribution of the FD canopies, which serves as a replacement for field surveys in the attempt to realize a wide-scale plant survey by the local governments.

全文