摘要

This paper proposes a novel hybrid method to simulate the dry granular flow of materials over a wide range of inertial numbers that simultaneously covers the quasi-static and dense granular flow regimes. To overcome the lack of incremental objectivity whenever large deformations occur in solid-like regimes and to remove computational singularities in fluid-like regimes close to rest, the elastic-perfectly plastic theory based on the Drucker-Prager yield criterion is combined with the theory of dense granular flows. By implementing some new modifications at the boundaries and removing all ghost particles, smoothed particle hydrodynamics (SPH) is used as the framework for the method. A number of benchmark problems have been solved to show the capabilities of the new modified SPH method. Precise prediction of both location and pressure makes the modifications comparable with the previous works on SPH. Finally, the method is used to solve the classic 2D dry granular cliff collapse problem and to model dry granular material flow inside a rotary drum. The outcomes of the numerical simulation show good agreement with tabletop experiments and published results.

  • 出版日期2017-4