摘要

Cognitive dysfunction is a hallmark of chronic psychostimulant misuse. Adolescents may have heightened risk of developing drug-induced deficits because their brains are already undergoing widespread changes in anatomy and function as a normal part of development. To address this hypothesis, we performed two sets of experiments where adolescent and young adult rats were pre-exposed to saline or amphetamine (1 or 3 mg/kg) and subsequently tested in a prefrontal cortex (PFC)-sensitive working memory task. A total of ten injections of AMPH or saline (in control rats) were given every other day over the course of 19 days. After rats reached adulthood (>90 days old), cognitive performance was assessed using operant-based delayed matching-to-position (DMTP) and delayed nonmatching-to-position (DNMTP) tasks. DNMTP was also assessed following challenges with amphetamine (0.3-1.25 mg/kg), and ketamine (5.0-10 mg/kg). In experiment one, we also measured the locomotor response following the first and tenth pre-exposure to amphetamine and after an amphetamine challenge given at the conclusion of operant testing. Compared to adult-exposed groups, adolescents were less sensitive to the psychomotor effects of amphetamine. However, they were more vulnerable to exposure-induced cognitive impairments. For example, adolescent-exposed rats displayed delay-dependent deficits in accuracy, increased sensitivity to proactive interference, and required more training to reach criterion. Drug challenges produced deficits in DNMTP performance, but these were not dependent on pre-exposure group. These studies demonstrate age of exposure-dependent effects of amphetamine on cognition in a PFC-sensitive task, suggesting a heightened sensitivity of adolescents to amphetamine-induced neuroplasticity.

  • 出版日期2013-4-1

全文