摘要

A mimetic porous carbon model is generated using quench molecular dynamics simulations that reproduces experimental radial distribution functions of activated carbon. The resulting structure is composed of curved and defected graphene sheets. The curvature is induced by nonhexagonal rings. The quench conditions are systematically varied and the final porous structure is scrutinized in terms of its pore size distribution, pore connectivity, and fractal dimension. It is found that the initial carbon density affects the fractal dimension but only causes a minor shift in the pore size distribution. On the other hand, the quench rate affects the pore size distribution but only causes a minor shift in the fractal dimension.

  • 出版日期2008-6-21