摘要

Objective. A new polymerizable quaternary ammonium monomer (IPhene) with iodine anion was synthesized and incorporated into Bis-GMA/TEGDMA (50/50, wt/wt) to prepare antibacterial and radio-opaque dental resin. Methods. IPhene was synthesized through a 2-steps reaction route, and its structure was confirmed by FT-IR and H-1-NMR spectra. IPhene was incorporated into Bis-GMA/TEGDMA (50/50, wt/wt) with a series of mass fraction (from 10 wt.% to 40 wt.%). Degree of monomer conversion (DC) was determined by FT-IR analysis. Polymerization shrinkage was determined according to the variation of density before and after polymerization. The flexural strength, modulus of elasticity, and fracture energy were measured using a three-point bending set up. Radiograph was taken to evaluate the radio-opacity of the polymer. A single-species biofilm model with Streptococcus mutans (S. mutans) as the tests organism was used to evaluate the antibacterial activity of the polymer. Bis-GMA/TEGDMA resin system without IPhene was used as a control group. Results. FT-IR and 1H-NMR spectra of IPhene revealed that IPhene was the same as the designed structure. ANOVA analysis showed that when mass fraction of IPhene was more than 10 wt.%, the obtained resin formulation had lower DC, polymerization shrinkage, FS, and FM than control resin (p < 0.05). Polymers with 20 wt.% and 30 wt.% IPhene had higher fracture energies than control polymer (p < 0.05). IPhene containing samples had higher radio-opacity than control group (p < 0.05), and radio-opacity of IPhene containing sample increased with the increasing of IPhene mass fraction (p < 0.05). Only polymers with 30 wt.% and 40 wt.% of IPhene showed antibacterial activity (p < 0.05). Signcance. IPhene could endow dental resin with both antibacterial and radio-opaque activity when IPhene reached 30 wt.% or more. Though sample with 30 wt.% of IPhene had lower FS and FM than control group, its lower volumetric shrinkage, higher fracture energy, higher radio-opacity, and antibacterial activity still made it having potential to be used in dentistry.