MEK5 is Activated by Shear Stress, Activates ERK5 and Induces KLF4 to Modulate TNF Responses in Human Dermal Microvascular Endothelial Cells

作者:Clark Paul R; Jensen Todd J; Kluger Martin S; Morelock Maurice; Hanidu Adedayo; Qi Zhenhao; Tatake Revati J; Pober Jordan S*
来源:Microcirculation, 2011, 18(2): 102-117.
DOI:10.1111/j.1549-8719.2010.00071.x

摘要

P>Objective:
ECs lining arteries respond to LSS by suppressing pro-inflammatory changes, in part through the activation of MEK5, ERK5 and induction of KLF4. We examined if this anti-inflammatory pathway operates in human ECs lining microvessels, the principal site of inflammatory responses.
Methods:
We used immunofluorescence microscopy of human skin to assess ERK5 activation and KLF4 expression in HDMECs in situ. We applied LSS to or overexpressed MEK5/CA in cultured HDMECs and assessed gene expression by microarrays and qRT-PCR and protein expression by Western blotting. We assessed effects of MEK5/CA on TNF responses using qRT-PCR, FACS and measurements of HDMEC monolayer electrical resistance. We used siRNA knockdown to assess the role of ERK5 and KLF4 in these responses.
Results:
ERK5 phosphorylation and KLF4 expression is observed in HDMECs in situ. LSS activates ERK5 and induces KLF4 in cultured HDMECs. MEK5/CA-transduced HDMECs show activated ERK5 and increased KLF4, thrombomodulin, eNOS, and ICAM-1 expression. MEK5 induction of KLF4 is mediated by ERK5. MEK5/CA-transduced HDMECs are less responsive to TNF, an effect partly mediated by KLF4.
Conclusions:
MEK5 activation by LSS inhibits inflammatory responses in microvascular ECs, in part through ERK5-dependent induction of KLF4.

  • 出版日期2011-2