Adsorption characteristics of Cu2+ and Zn2+ from aqueous solution using carbonized food waste

作者:Han Jung Geun; Lee Jong Young; Hong Ki Kwon; Lee Jai Young; Kim Young Woong; Hong Sun Mi
来源:Journal of Material Cycles and Waste Management, 2010, 12(3): 227-234.
DOI:10.1007/s10163-010-0292-y

摘要

The aim of the present study was to analytically provide adsorption characteristics of Cu2+ and Zn2+ using carbonized food waste (CFW); more specifically, batch tests were conducted using various concentrations of metal ions, contact times, and initial pH levels in an attempt to understand the adsorption removal of heavy metal ions in aqueous solution at concentrations ranging between 50 and 800 mg/l. The results confirmed that the adsorption equilibrium was established within a maximum of 80 min, and the maximum concentrations for adsorption of Cu2+ and Zn2+ were 28.3 and 23.5 mg/g, respectively. These adsorption levels indicate that CFW has better performance than many other adsorbents. In experiments using different pH conditions, the applicability to acid wastewater was found to be high, and an excellent adsorption removal ratio of 75%-90% was observed under acid conditions at pH 2-4. Furthermore, as the adsorption time increased, the calcium component in the CFW began to leach into the aqueous solution and raise the pH, accordingly causing the removal of heavy metal ions partially as a result of precipitation. When our results were analyzed using the Langmuir model and the Freundlich model for isothermal adsorptivity, the activity of CFW in this study was shown to be more consistent with the former; the adsorption speed of Cu2+ and Zn2+ according to a pseudosecond-order reaction model was found to be very fast for an initial concentration of not more than 100 mg/l. In a test in which an attempt was made to compare adsorption capacity values obtained from the experiments in this study with the aforementioned three models, the pseudosecond-order reaction model was found to provide results closest to the actual values.

  • 出版日期2010-9