摘要

There is significant demand for synthetic bone substitute materials that can decrease the incidence of implant-based bacterial infections. The intent of this research was to evaluate the antimicrobial activity and biologic potential of calcium phosphate (CaP) constructs substituted with silver (Ag) that were produced via selfpropagating high-temperature synthesis (SHS). SHS is a combustion synthesis technique that has successfully generated porous CaP bioceramics intended for use in bone repair. SHS reactions are highly versatile; dopants can be added to the reactant powders to alter product chemistry and morphology. In this research, Ag powder was added to the reactants generating porous CaP constructs containing 0.5, 1, or 2 wt% Ag. Antibacterial performance of the constructs was assessed against Escherichia coli, a representative model for Gram-negative bacteria. Liquid solutions (1 mu g/mL) of CaP-Ag particles to phosphate buffered saline were incubated with 10 5 cells/mL. After 24 h, 10 mu L of solution were spread on an LB agar plate and cultured for 24 h at 37 degrees C. Samples cultured with CaP-Ag showed complete bacterial inhibition while the controls (E. coli only and CaP without Ag) exhibited significant colony formation. The effects of Ag concentration on cytotoxicity and biocompatibility were tested in vitro. At 7 days, osteoblasts uniformly enveloped the CaP-Ag particles and displayed a healthy flattened morphology suggesting the concentrations of Ag incorporated into constructs were not cytotoxic. CaP-Ag constructs produced via SHS represent a source of synthetic bone substitute materials that could potentially inhibit, or reduce the incidence of post-operative bacterial infections.

  • 出版日期2016-6