A Novel Putrescine Exporter SapBCDF of Escherichia coli

作者:Sugiyama Yuta; Nakamura Atsuo; Matsumoto Mitsuharu; Kanbe Ayaka; Sakanaka Mikiyasu; Higashi Kyohei; Igarashi Kazuei; Katayama Takane; Suzuki Hideyuki; Kurihara Shin*
来源:JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291(51): 26343-+.
DOI:10.1074/jbc.M116.762450

摘要

Recent research has suggested that polyamines (putrescine, spermidine, and spermine) in the intestinal tract impact the health of animals either negatively or positively. The concentration of polyamines in the intestinal tract results from the balance of uptake and export of the intestinal bacteria. However, the mechanism of polyamine export from bacterial cells to the intestinal lumen is still unclear. In Escherichia coli, PotE was previously identified as a transporter responsible for putrescine excretion in an acidic growth environment. We observed putrescine concentration in the culture supernatant was increased from 0 to 50 mu M during growth of E. coli under neutral conditions. Screening for the unidentified putrescine exporter was performed using a gene knock-out collection of E. coli, and deletion of sapBCDF significantly decreased putrescine levels in the culture supernatant. Complementation of the deletion mutant with the sapBCDF genes restored putrescine levels in the culture supernatant. Additionally, the Delta sapBCDF strain did not facilitate uptake of putrescine from the culture supernatant. Quantification of stable isotope-labeled putrescine derived from stable isotope-labeled arginine supplemented in the medium revealed that SapBCDF exported putrescine from E. coli cells to the culture supernatant. It was previously reported that SapABCDF of Salmonella enterica sv. typhimurium and Haemophilus influenzae conferred resistance to antimicrobial peptides; however, the E. coli Delta sapBCDF strain did not affect resistance to antimicrobial peptide LL-37. These results strongly suggest that the natural function of the SapBCDF proteins is the export of putrescine.

  • 出版日期2016-12-16