Design and analysis of a silicon-based terahertz plasmonic switch

作者:Khorrami Mohammad Ali*; El Ghazaly Samir
来源:Optics Express, 2013, 21(21): 25452-25466.
DOI:10.1364/OE.21.025452

摘要

In this paper, a novel terahertz (THz) plasmonic switch is designed and simulated. The device consists of a periodically corrugated n-type doped silicon wafer covered with a metallic layer. Surface plasmon propagation along the structure is controlled by applying a control voltage onto the metal. As will be presented, the applied voltage can effectively alter the width of the depletion layer appeared between the deposited metal and the semiconductor. In this manner, the conductivity of the silicon substrate can be successfully controlled due to the absence of free electrons at the depleted sections. Afterwards, the effectiveness of the proposed plasmonic switch is enhanced by implementing a p(++)-type doped well beneath the metallic indentation edges. Consequently, a P-Intrinsic-N diode is formed which can manipulate the plasmon propagation by modifying the electron and hole densities inside the intrinsic area. The simulation results are explained very concisely by the help of scattering matrix formalism. Such a representation is essential as employing the switches in the design of complex plasmonic systems with many interacting parts.

  • 出版日期2013-10-21