A Nonenzymatic Sensor for H2O2 Detection Based on Rare-earth Perovskite LaNiTiO3 Containing Ni

作者:Wang Hai-Yan; Zhu Xiao-Li; Xin Mei-Ling; Xu Yan-Hong*
来源:Chinese Journal of Analytical Chemistry, 2014, 42(6): 847-852.
DOI:10.3724/SP.J.1096.2014.31155

摘要

A Ni-based rare-earth perovskite LaNiTiO3 nanoparticles was synthesized and its catalytic activity was investigated. Based on this, a simple and quick nonenzyme electrochemical sensor was fabricated with stable and reliable performances for the determination of hydrogen peroxide (H2O2). The techniques of X-ray diffraction, FT-IR spectra, transmission electron microscopy, X-ray fluorescene spectroscopy and scan electronmicroscope were used to characterize the composition, structure and morphology of as-synthesized sample. The sensor based on this nanomaterial was investigated and optimized by cyclic voltammetry and current-time techniques. The results showed the working electrode modified with LaNiTiO3 (0.5 g/L, 8.0 mu L) in 0.1 mol/L NaOH exhibited good catalytic properties for H2O2. Under the optimum conditions, the sensor performed excellent properties, such as quick response time (about 2 s), a wide linearity (0.2 mu mol/L -8.0 mmol/L), a low detection limit of 0.05 mu mol/L (S/N = 3), a high sensitivity of 957 mu A (mmol/L)(-1) cm(-2), good reproducibility and anti. interference ability, which was better than those of some other biosensors reported recently. So, it may be used for the analysis and detection of H2O2 in practical samples such as biomedicine.

全文