摘要

Optic flow is one of the most important sources of information for enabling human navigation through the world. A striking finding from single-cell studies in monkeys is the rapid saturation of response of MT/MST areas with the density of optic flow type motion information. These results are reflected psychophysically in human perception in the saturation of motion aftereffects. We began by comparing responses to natural optic flow scenes in human visual brain areas to responses to the same scenes with inverted contrast (photo negative). This changes scene familiarity while preserving local motion signals. This manipulation had no effect; however, the response was only correlated with the density of local motion (calculated by a motion correlation model) in V1, not in MT/MST. To further investigate this, we manipulated the visible proportion of natural dynamic scenes and found that areas MT and MST did not increase in response over a 16-fold increase in the amount of information presented, i.e., response had saturated. This makes sense in light of the sparseness of motion information in natural scenes, suggesting that the human brain is well adapted to exploit a small amount of dynamic signal and extract information important for survival.

  • 出版日期2011