A Simplified Model for Effective Thermal Conductivity of Highly Porous Ceramic Fiber Insulation

作者:Lumley Nicholas P G*; Ford Emory; Minford Eric; Porter Jason M
来源:Journal of Thermal Science and Engineering Applications, 2015, 7(4): 041022.
DOI:10.1115/1.4031540

摘要

Highly porous ceramic fiber insulations are beginning to be considered as a replacement for firebrick insulations in high temperature, high pressure applications by the chemical process industry. However, the implementation of such materials has been impeded by a lack of experimental data and predictive models, especially at high gas pressure. The goal of this work was to develop a general, applied thermophysical model to predict effective thermal conductivity, k(eff), of porous ceramic fiber insulation materials and to determine the temperature, pressure, and gas conditions under which natural convection is a possible mode of heat transfer. A model was developed which calculates k(eff) as the sum of conduction, convection, and radiation partial conductivities. The model was validated using available experimental data, including laboratory measurements made by this research effort. Overall, it was concluded that natural convection is indeed possible for the most porous insulations at pressures exceeding 10 atm. Furthermore, k(eff) for some example insulations was determined as a function of temperature, pressure, and gas environment.

  • 出版日期2015-12