摘要

The numerical mode of nonlinear wave transformation based on both the Laplace equation for water field and the Bernoulli equation for water surface is a kind of time-domain boundary problem with initial conditions. And the basis for establishing the numerical mode of nonlinear wave in time domain is to trace the position of wave free surface and to calculate the instantaneous surface height and surface potential function. This paper firstly utilizes the '0 - 1' combined BEM to separate the boundary by means of discretization of Green's integral equation based on the Laplace equation, then separates the free surface of wave with FEM and derives the FEM equation of wave surface that satisfies the nonlinear boundary conditions. By jointly solving the above BEM and FEM equations, the wave potential and surface height could be obtained with iteration in time domain. Thus a new kind of nonlinear numerical mode is established for calculating wave transformation. The wave test in the numerical wave tank shows that the numerical simulation with this mode is of high accuracy.