摘要

Electrically conductive and hydrophilic coatings for proton exchange membrane fuel cell (PEMFC) stainless steel bipolar plates have been developed in order to minimize voltage losses at the plate and gas diffusion layer (GDL) interface and facilitate liquid water transport in plate channels for efficient stack operation. The coatings are based on a multifunctional silane, 1,2-bis(triethoxysilyl)ethane (BTSE), mixed with conductive, hydrophilic carbon black. Vulcan (R) XC72 carbon black was modified with either polar phenylsulfonic acid (PSA) or carboxylic acid (COOH) groups to increase hydrophilic character and wetting behavior. Wetting and electrical contact resistance performance was compared with coatings based on nano-particle titania and silica. These conductive silane and carbon composite coating precursors are conveniently formulated in alcohol solution for scalable application via spray coating. Cured films exhibit negligible contact resistance increase (<2 m Omega cm(2)) at 1.4 MPa when deposited on both physical vapor deposited (PVD) carbon and electroplated gold coated stainless steel. The coatings were tested for hydrophilicity retention under wet and dry fuel cell conditions where the BTSE-COOH coating remained hydrophilic on stamped stainless steel bipolar plate prototypes after greater than 1200h of simulated fuel cell testing with only moderate loss of hydrophilicity.

  • 出版日期2012-7-15