摘要

The defect of process equipments is a major factor that impairs the yields in the mass production of semiconductor wafer fabrication and it is a main supervision means to use high-resolution defect inspection tools to detect and monitor the defect damage. Due to the high investment costs of these inspection tools and the resulting decrease in the throughput, how to improve the sampling rate is an important issue for the associated inspection strategy. This paper proposes a new concept and implementation of virtual inspection (VI) to enhance the detection and monitoring of defect in semiconductor production process. The underlying theory of the VI concept is that the state variables identifications (SVIDs) of process equipments can reflect the process quality effectively and loyally. The approach of VI is to combine the application of the fault detection and classification (FDC), and the defect library and the re-engineering of inspection procedure to reach the full-scope of strategic objective. VI enables the defect monitoring to enter a new era by promoting the monitoring level of defect inspection from the previous lot-sampling basis to the wafer-sampling level, and hence upgrades the sampling strategy from random-sampling to full and right-sampling. In this study, various typical defect cases are utilized to illustrate how to create VI models and verify the reliability of the proposed approach. Furthermore, a feasible architecture of the VI implementation for mass production in semiconductor factory is presented in the paper.

  • 出版日期2011-2