An Antibody-Drug Conjugate Directed against Lymphocyte Antigen 6 Complex, Locus E (LY6E) Provides Robust Tumor Killing in a Wide Range of Solid Tumor Malignancies

作者:Asundi Jyoti; Crocker Lisa; Tremayne Jarrod; Chang Peter; Sakanaka Chie; Tanguay Josh; Spencer Susan; Cha****ni Sreedevi; Luis Elizabeth; Gascoigne Karen; Desai Rupal; Raja Rajiv; Friedman Brad A; Haverty Peter M; Polakis Paul; Firestein Ron*
来源:Clinical Cancer Research, 2015, 21(14): 3252-3262.
DOI:10.1158/1078-0432.CCR-15-0156

摘要

Purpose: Chemotherapies are limited by a narrow therapeutic index resulting in suboptimal exposure of the tumor to the drug and acquired tumor resistance. One approach to overcome this is through antibody-drug conjugates (ADC) that facilitate greater potency via target-specific delivery of highly potent cytotoxic agents. Experimental Design: In this study, we used a bioinformatics approach to identify the lymphocyte antigen 6 complex locus E (LY6E), an IFN-inducible glycosylphosphatidylinositol (GPI)-linked cell membrane protein as a promising ADC target. We developed a monoclonal anti-LY6E antibody and characterized in situ LY6E expression in over 750 cancer specimens and normal tissues. Target-dependent anti-LY6E ADC killing was investigated both in vitro and in vivo using patient-derived xenograft models. Results: Using in silico approaches, we found that LY6E was significantly overexpressed and amplified in a wide array of different human solid tumors. IHC analysis revealed high LY6E protein expression in a number of tumor types, such as breast, lung, gastric, ovarian, pancreatic, kidney and head/neck carcinomas. Characterization of the endocytic pathways for LY6E revealed that the LY6E-specific antibody is internalized into cells leading to lysosomal accumulation. Consistent with this, a LY6E-specific ADC inhibited in vitro cell proliferation and produced durable tumor regression in vivo in clinically relevant LY6E-expressing xenograft models. Conclusions: Our results identify LY6E as a highly promising molecular ADC target for a variety of solid tumor types with current unmet medical need.

  • 出版日期2015-7-15