摘要

Flash floods may influence the development of trees growing on channel bars and floodplains. In this study, we analyze and quantify anatomical reactions to wounding in diffuse-porous (Alnus glutinosa L.) and ring-porous (Fraxinus angustifolia Vahl. and Quercus pyrenaica Willd.) trees in a Mediterranean environment. A total of 54 cross-sections and wedges were collected from trees that had been injured by past flash floods. From each of the samples, micro-sections were prepared at a tangential distance of 1.5 cm from the injury to determine wounding-related changes in radial width, tangential width and lumen of earlywood vessels, and fibers and parenchyma cells (FPC). in diffuse-porous A. glutinosa, the lumen area of vessels shows a significant (non-parametric test, P-value <0.05) decrease by almost 39% after wounding. For ring-porous F. angustifolia and Q. pyrenaica, significant decreases in vessel lumen area are observed as well by 59 and 42%, respectively. Radial width of vessels was generally more sensitive to the decrease than tangential width, but statistically significant values were only observed in F angustifolia. Changes in the dimensions of earlywood FPC largely differed between species. While in ring-porous F angustifolia and Q. pyrenaica the lumen of FPC dropped by 22 and 34% after wounding, we observed an increase in FPC lumen area in diffuse-porous A. glutinosa of similar to 35%. Our data clearly show that A. glutinosa represents a valuable species for flash-flood research in vulnerable Mediterranean environments. For this species, it will be possible in the future to gather information on past flash floods with non-destructive sampling based on increment cores. In ring-porous F. angustifolia and Q. pyrenaica, flash floods leave less drastic, yet still recognizable, signatures of flash-flood activity through significant changes in vessel lumen area. In contrast, the use of changes in FPC dimensions appears less feasible for the determination of past flash-flood events as these two species do not react with the same intensity and clarity as A. glutinosa.

  • 出版日期2010-6