Age-Dependent Neuroplasticity Mechanisms in Alzheimer Tg2576 Mice Following Modulation of Brain Amyloid-beta Levels

作者:Lilja Anna M; Rojdner Jennie; Mustafiz Tamanna; Thome Carina M; Storelli Elisa; Gonzalez Daniel; Unger Lithner Christina; Greig Nigel H; Nordberg Agneta; Marutle Amelia*
来源:PLos One, 2013, 8(3): e58752.
DOI:10.1371/journal.pone.0058752

摘要

The objective of this study was to investigate the effects of modulating brain amyloid-beta (A beta) levels at different stages of amyloid pathology on synaptic function, inflammatory cell changes and hippocampal neurogenesis, i.e. processes perturbed in Alzheimer's disease (AD). Young (4- to 6-month-old) and older (15- to 18-month-old) APP(SWE) transgenic (Tg2576) mice were treated with the AD candidate drug (+)-phenserine for 16 consecutive days. We found significant reductions in insoluble A beta 1-42 levels in the cortices of both young and older transgenic mice, while significant reductions in soluble A beta 1-42 levels and insoluble A beta 1-40 levels were only found in animals aged 15-18 months. Autoradiography binding with the amyloid ligand Pittsburgh Compound B (H-3-PIB) revealed a trend for reduced fibrillar A beta deposition in the brains of older phenserine-treated Tg2576 mice. Phenserine treatment increased cortical synaptophysin levels in younger mice, while decreased interleukin-1 beta and increased monocyte chemoattractant protein-1 and tumor necrosis factor-alpha levels were detected in the cortices of older mice. The reduction in A beta 1-42 levels was associated with an increased number of bromodeoxyuridine-positive proliferating cells in the hippocampi of both young and older Tg2576 mice. To determine whether the increased cell proliferation was accompanied by increased neuronal production, the endogenous early neuronal marker doublecortin (DCX) was examined in the dentate gyrus (DG) using immunohistochemical detection. Although no changes in the total number of DCX+-expressing neurons were detected in the DG in Tg2576 mice at either age following (+)-phenserine treatment, dendritic arborization was increased in differentiating neurons in young Tg2576 mice. Collectively, these findings indicate that reducing A beta 1-42 levels in Tg2576 mice at an early pathological stage affects synaptic function by modulating the maturation and plasticity of newborn neurons in the brain. In contrast, lowering A beta levels in Tg2576 mice when Ab plaque pathology is prominent mainly alters the levels of proinflammatory cytokines and chemokines.

  • 出版日期2013-3-15

全文