摘要

Previously, we have shown that peripheral challenge of mice with double stranded RNA (dsRNA), a viral mimic, evokes global upregulation of cerebral inflammatory genes and, particularly, genes encoding chemokines. Because chemokine networks are potent modulators of brain function, the present study was undertaken to comprehensively characterize the cerebral response of chemokine ligand and receptor genes to peripheral immune system stimulation. Briefly, C57BL/6 mice were intraperitoneally injected with 12 mg/kg of polyinosinic-polycytidylic acid (PIC) and the expression of 39 mouse chemokine ligand and 20 receptor genes was monitored in the cerebellum by real time quantitative RT-PCR within 24 h. Almost half of the ligand genes featured either transient or sustained upregulation from several- to several thousand-fold. Five CXC type genes, i.e., Cxcl9, Cxcl11, Cxcl10, Cxcl2 and Cxcl1, were the most robustly upregulated, and were followed by six CC type genes, i.e., Ccl2, Ccl7, Ccl5, Ccl12, Ccl4 and Ccl11. Seven genes showed moderate upregulation, whereas the remaining genes were unresponsive. Six receptor genes, i.e., Cxcr2, Ccr7, Cxcr5, Ccr6, Ccr1 and Ccr5, featured a several-fold upregulation. Similar chemokine gene response was observed in the forebrain and brainstem. This upregulation of chemokine genes could be induced in na < ve mice by transfer of blood plasma from PIC-challenged mice. Employing oligodeoxynucleotide-labeled PIC we further showed that intraperitoneally injected PIC was not transferred to the blood. In conclusion, peripheral PIC challenge elicits a broad upregulation of cerebral chemokine genes, and this upregulation is mediated by blood-borne agents.

  • 出版日期2011-3