摘要

Based on the quantitative structure-activity relationships (QSARs) models developed by artificial neural networks (ANNs), genetic algorithm (GA) was used in the variable-selection approach with molecule descriptors and helped to improve the back-propagation training algorithm as well. The cross validation techniques of leave-one-out investigated the validity of the generated ANN model and preferable variable combinations derived in the GAs. A self-adaptive GA-ANN model was successfully established by using a new estimate function for avoiding over-fitting phenomenon in ANN training. Compared with the variables selected in two recent QSAR studies that were based on stepwise multiple linear regression (MLR) models, the variables selected in self-adaptive GA-ANN model are superior in constructing ANN model, as they revealed a higher cross validation (CV) coefficient (Q(2)) and a lower root mean square deviation both in the established model and biological activity prediction. The introduced methods for validation, including leave-multiple-out. Y-randomization, and external validation, proved the superiority of the established GA-ANN models over MLR models in both stability and predictive power. Self-adaptive GA-ANN showed us a prospect of improving QSAR model.