Analytical stability conditions for elastic composite materials with a non-positive-definite phase

作者:Kochmann D M*; Drugan W J
来源:Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 2012, 468(2144): 2230-2254.
DOI:10.1098/rspa.2011.0546

摘要

Elastic multi-phase materials with a phase having appropriately tuned non-positive-definite elastic moduli have been shown theoretically to permit extreme increases in multiple desirable material properties. Stability analyses of such composites were only recently initiated. Here, we provide a thorough stability analysis for general composites when one phase violates positive-definiteness. We first investigate the dynamic deformation modes leading to instability in the fundamental two-phase solids of a coated cylinder (two dimensions) and a coated sphere (three dimensions), from which we derive closed-form analytical sufficient stability conditions for the full range of coating thicknesses. Next, we apply the energy method to derive a general correlation between composite stability limit and composite bulk modulus that enables determination of closed-form analytical sufficient stability conditions for arbitrary multi-phase materials by employing effective modulus formulas coupled with a numerical finite-element stability analysis. We demonstrate and confirm this new approach by applying it to (i) the two basic two-phase solids already analysed dynamically; and (ii) a more geometrically complex matrix/distributed-inclusions composite. The specific new analytical stability results, and new methods presented, provide a basis for creation of novel, stable composite materials.

  • 出版日期2012-8-8