摘要

Approximation is central to many optimization problems and the supporting theory provides insight as well as foundation for algorithms. In this paper, we lay out a broad framework for quantifying approximations by viewing finite- and infinite-dimensional constrained minimization problems as instances of extended real-valued lower semicontinuous functions defined on a general metric space. Since the Attouch-Wets distance between such functions quantifies epi-convergence, we are able to obtain estimates of optimal solutions and optimal values through bounds of that distance. In particular, we show that near-optimal and near-feasible solutions are effectively Lipschitz continuous with modulus one in this distance. Under additional assumptions on the underlying metric space, we construct approximating functions involving only a finite number of parameters that still are close to an arbitrary extended real-valued lower semicontinuous functions.

  • 出版日期2018-8