摘要

This paper describes transport properties of linear water waves propagating within a square array of fixed square cylinders. The main focus is on achieving the conditions for all-angle-negative-refraction (AANR) thanks to anomalous dispersion in fluid-filled periodic structures. Of particular interest are two limit cases when either the edges or the vertices of the cylinders come close to touching. In the former case, the array can be approximated by a lattice of thin water channels (for which dispersion curves are given in closed form and thus frequencies at which AANR occurs) whereas in the latter case, the array behaves as a checkerboard with cells consisting either of water tanks or rigid cylinders (for which standing modes are given in closed form). The tools of choice for the present analysis are, on the one hand, the finite element method which solves numerically spectral problems in periodic media, and on the other hand, a two-scale asymptotic method which provides estimates of dispersion curves and associated eigenfields through a lattice approximation (namely thin water channels between rigid cylinders). Simple duality correspondences are found based on fourfold symmetry of square water checkerboards that allow us to get some insight into their spectra. Last, some numerical evidence is provided for water waves focusing with no astigmatism through such arrays, when they are of finite extent.

  • 出版日期2008-4