摘要

The underwater acoustic channel is a complicated and time-varying multipath channel, and many equalization algorithms have been researched and developed to overcome the difficulties for underwater acoustic Communication. Unfortunately, many algorithms are computational intensive and prone to lose convergence due to their sensitiveness to different channel configurations. In this paper, a pulse position modulation (PPM) scheme is proposed, and it uses two M-sequences of low cross-correlation to transfer information, which are modulated on two orthogonal carriers. One is used as a reference sequence, and the other is shifted relative to the reference. Information is carried by the starting time difference between the two sequences in each symbol. Comparing with conventional direct-sequence spread spectrum technique, the proposed scheme is more spectral efficient. Two receiver designs are given, one takes advantages of M-sequences' auto-correlation properties, and the other is motivated by passive phase conjugation (PPC) to take advantages of the channel. Combined with M-sequence, PPC performance is augmented without a receiving array to cover the water column, and it is far less complex than adaptive equalizers for receivers. Results from take field trials are analyzed, and they verify potential applications of this PPM scheme.

  • 出版日期2010-1