摘要

Heat processing has been used to improve protein utilization and availability of animal nutrition. However, to date, few studies exist on heat-induced protein molecular structure changes on a molecular basis. The aims of this study were to use molecular spectroscopy as a novel approach to determine heat-induced protein molecular structure changes affected by moist and dry heating and quantify protein molecular structures and nutritive value in the rumen and intestine in dairy cattle. In this study, soybean was used as a model for feed protein and was autoclaved at 120 degrees C for 1 h (moist heating) and dry heated at 120 degrees C for 1 h. The parameters assessed in this study included protein structure a-helix and beta-sheet and their ratio, protein subfractions associated with protein degradation behaviors, intestinal protein availability, and energy values. The results show that heat treatments changed the protein molecular structure. Both dry and moist heating increased the amide I-to-amide II ratio. However, for the protein alpha-helix-to-beta-sheet ratio, moist heating decreased but dry heating increased the ratio. Compared with dry heating, moist heating dramatically changed the chemical and nutrient profiles of soybean seed. It greatly decreased soluble crude protein, nonprotein nitrogen, and increased neutral detergent insoluble protein. Both dry and moist heating treatments did not alter digestible nutrients and energy values. Heating tended to decrease the nonprotein nitrogen fraction (soluble and rapidly degradable protein fraction) and true protein 1 fraction (fast-degradable protein fraction). Conversely, the true protein 3 fraction (slowly degradable fraction) significantly increased. The in situ rumen study showed that moist heating decreased protein rumen degradability and increased intestinal digestibility of rumen-undegradable protein. Compared with the raw soybeans, dry heating did not affect rumen degradability and intestinal digestibility. In conclusion, compared with dry heating, moist heating dramatically affected the nutrient profile, protein subfractions, rumen degradability, intestinal digestibility, and protein molecular structure (amide I-to-II ratio; alpha-helix-to-beta-sheet ratio). The sensitivity of soybean seed to moist heating was much higher than that to dry heating in terms of the structure and nutrient profile changes.

  • 出版日期2011-12
  • 单位Saskatoon; Saskatchewan