摘要

Two novel copolymers based on benzothiadiazole (BT) or difluorobenzothiadizole (ffBT) with 2,2'-(perfluoro-1,4-phenylene) dithiophene (2TPF4), namely PBT-2TPF4 and PffBT-2TPF4, are synthesized for applications in polymer solar cells (PSCs). A noticeably high open-circuit voltage (Voc) of 1.017 and 0.87 V are achieved for PffBT-2TPF4 and PBT-2TPF4-based devices, respectively. Although only a moderate efficiency (5.7%) of PBT-2TPF4-based devices is obtained, it is first demonstrated that 2TPF4 is a promising acceptor block for construction of the donor copolymers which possess high Voc, prominent crystallinity, and long-term stability, simultaneously. Besides, two thienyl flanking the tetrafluorophenylene can decrease torsion angle between conjugated units, resulting in a high coplanar structure of copolymers to enhance their charge carrier mobility. The findings may open a promising and practical way to accelerate the commercialization of PSCs by developing a series of new donor copolymers for efficient and long-term stable thickness bulk heterojunction PSCs.