摘要

We study solution techniques for parabolic equations with fractional diffusion and Caputo fractional time derivative, the latter being discretized and analyzed in a general Hilbert space setting. The spatial fractional diffusion is realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic problem posed on a semi-infinite cylinder in one more spatial dimension. We write our evolution problem as a quasi-stationary elliptic problem with a dynamic boundary condition. We propose and analyze an implicit fully discrete scheme: first-degree tensor product finite elements in space and an implicit finite difference discretization in time. We prove stability and error estimates for this scheme.

  • 出版日期2016