An Engineered Rare Codon Device for Optimization of Metabolic Pathways

作者:Wang, You; Li, Chunying; Khan, Md Rezaul Islam; Wang, Yushu; Ruan, Yunfeng; Zhao, Bin; Zhang, Bo; Ma, Xiaopan; Zhang, Kaisi; Zhao, Xiwen; Ye, Guanhao; Guo, Xizhi; Feng, Guoyin; He, Lin*; Ma, Gang*
来源:Scientific Reports, 2016, 6(1): 20608.
DOI:10.1038/srep20608

摘要

Rare codons generally arrest translation due to rarity of their cognate tRNAs. This property of rare codons can be utilized to regulate protein expression. In this study, a linear relationship was found between expression levels of genes and copy numbers of rare codons inserted within them. Based on this discovery, we constructed a molecular device in Escherichia coli using the rare codon AGG, its cognate tRNA (tRNAArg (CCU)), modified tRNAAsp (GUC. CCU), and truncated aspartyl-tRNA synthetase (TDRS) to switch the expression of reporter genes on or off as well as to precisely regulate their expression to various intermediate levels. To underscore the applicability of our work, we used the rare codon device to alter the expression levels of four genes of the fatty acid synthesis II (FASII) pathway (i. e. fabZ, fabG, fabI, and tesA') in E. coli to optimize steady-state kinetics, which produced nearly two-fold increase in fatty acid yield. Thus, the proposed method has potential applications in regulating target protein expression at desired levels and optimizing metabolic pathways by precisely tuning in vivo molar ratio of relevant enzymes.