摘要

The ease-of-use and reconfigurability of FPGAs makes them an attractive platform for accelerating algorithms. However, accelerating becomes a challenging task as the large number of possible design parameters lead to different accelerator variants. In this article, we propose techniques for fast design exploration and multi-objective optimization to quickly identify both algorithmic and hardware parameters that optimize these accelerators. This information is used to run regression analysis and train mathematical models within a nonlinear optimization framework to identify the optimal algorithm and design parameters under various objectives and constraints. To automate and improve the model generation process, we propose the use of L-1-regularized least squares regression techniques. We implement two real-time image processing accelerators as test cases: one for image deblurring and one for block matching. For these designs, we demonstrate that by sampling only a small fraction of the design space (0.42% and 1.1%), our modeling techniques are accurate within 2%-4% for area and throughput, 8%-9% for power, and 5%-6% for arithmetic accuracy. We show speedups of 340x and 90x in time for the test cases compared to brute-force enumeration. We also identify the optimal set of parameters for a number of scenarios (e.g., minimizing power under arithmetic inaccuracy bounds).

  • 出版日期2014-2