摘要

A highly efficient catalytic protocol for the isomerization of substituted amide-derived olefins is presented that successfully uses a hydride palladium catalyst system generated from [PdCl2(PPh3)2] and HSi(OEt)3. The Z to E isomerization was carried out smoothly and resulted in geometrically pure substituted olefins. Apart from the cistrans isomerization of double bonds, the selective reduction of terminal olefins and activated alkenes was performed with excellent functional group tolerance in the presence of an amide-derived olefin ligand, and the products were obtained in high isolated yields (up to >99?%). Furthermore, the palladium/hydrosilane system was able to promote the reductive decarbonylation of benzoyl chloride when a (Z)-olefin with an aromatic amide moiety was used as a ligand.

全文