摘要

Cobalt (Co) nanowire arrays were electrodeposited into the pores of polycarbonate membranes. A magnetic field parallel or perpendicular to the membrane plane was applied during deposition to control the wire growth. X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer were employed to investigate the structure as well as the magnetic properties of the nanowire arrays. The results show that the magnetic field applied during deposition strongly influences the growth of Co nanowires, inducing variations in their crystalline structure and magnetic properties. The sample deposited with the field perpendicular to the membrane plane exhibits a perpendicular magnetic anisotropy with greatly enhanced coercivity and squareness as a result of the preferred growth of Co grains with the c axis perpendicular to the film plane. In contrast, the deposition in a parallel magnetic field forces Co grains to grow with the c axis parallel to the film plane, resulting in in-plane anisotropy.