摘要

The 606 Ma old Abu Ziran granite of the Eastern Desert of Egypt intruded the southern margin of the Meatiq dome in a sinistral shear extensional setting. Its emplacement was enabled by a system of NW-trending sinistral shears, related Riedel shears and N-S extensional shear zones and faults. Magmatic flow was east-directed and controlled by Riedel shears that progressively rotated to an orientation favourable for extension. Strain markers that document magmatic flow show eastward decreasing strain together with strain increase from pluton centre to margins. This is explained by Newtonian flow between non-parallel plates and differences in flow velocities across the pluton. Solid state fabrics including shear fabrics, orientation of late magmatic dykes and quartz tension gashes, together with quartz C-axes distributions, document southward extensional shear within the solidified pluton and adjacent host rocks. Extensional shear is correlated with exhumation of the Meatiq dome coeval and soon after pluton solidification (585 Ma). Pressure temperature evolutionary paths, derived from fluid inclusions, show a clockwise path with exhumation by isothermal decompression in the Meatiq dome. By contrast, the overlying volcanosedimentary nappes experienced an anti-clockwise path released by temperature rise due to pluton emplacement followed by isobaric cooling. Quartz fabrics indicate high-temperature coaxial N-S flow in the northern Meatiq dome and lower-temperature, non-coaxial southward flow within the overlaying superficial nappe. This is explained by the exhumation process itself that progressively localised into simple shear domains when rocks approached higher crustal levels. Late extension at ca. 580 Ma was pure shear dominated and resulted in reversal of shear, now dextral, in the western Meatiq shear zone.

  • 出版日期2014-11