摘要

With the advent of mobile services with asymmetric and symmetric quality of service (QoS) requirements, traditional single link resource allocation techniques have started to show some limitations in handling the complex requirements. To address these issues, joint uplink/downlink resource management approaches were recently introduced where both communications links are jointly considered in the resource management process. One direct consequence of this coupling is a modification of the underlying queueing behavior since the decision making process in one direction in terms of transmission rate now depends on the performance achieved in the opposite direction. In this paper, we present a modeling approach of the decision making process that takes place under the joint uplink/downlink resource management framework. Using decentralized Markov decision processes (DEC-MDP) as a model and gradient ascent methods as an optimization technique, we formulate and solve the joint uplink/downlink decision making process. The uplink and downlink of each user are considered as agents. Assuming certain subcarrier and power allocation schemes, we investigate the resource usage in the uplink and downlink to achieve a certain delay balancing constraint where the total delay in the uplink and downlink is bound by a pre-determined threshold. The approach followed starts by modeling the problem in hand using DEC-MDPs. After discussing the different aspects of the model, the solution using gradient ascent is described. Simulation results illustrate the different dimensions of the problem and their impact on the resource management process.

  • 出版日期2015-12
  • 单位南阳理工学院

全文