摘要

A large-eddy simulation of the atmospheric boundary layer, large enough to contain both an urban surface layer and a convective mixed layer, was performed to investigate inner-layer and outer-layer scale motions. The objective was to determine the applicability of Monin-Obukhov similarity theory to inner-layer motions, to investigate the influence of outer-layer motions on surface-layer structure, as well as to assess the interaction of the two scales of motion. The urban surface roughness consisted of square-patterned cubic buildings of dimension H (40 m). A spatial filter was used to decompose the two scales in the inertial sublayer. The horizontal square filter of size 10H was effective in separating the inner-layer (surface-layer height a parts per thousand 2 H) and outer-layer scales (boundary-layer height delta a parts per thousand 30H), where the Reynolds stress contribution of the inner layer dominates in the logarithmic layer (depth 2H). Similarity coefficients for velocity fluctuations were successfully determined for inner-layer motions in the surface layer, proving the robustness of Monin-Obukhov similarity for surface-layer turbulence. The inner-layer structures exhibit streaky structures that have similar streamwise length but narrower spanwise width relative to the streamwise velocity fluctuation field, consistent with observations from an outdoor scale model. The outer-layer motions to some extent influence the location of ejections and sweeps through updraft and downdraft motions, respectively, thus, disturbing the homogeneity and similarity of inner-layer motions. Although the horizontal averages of the variances and covariance of motions reveal that the Reynolds stresses are dominated by inner-layer structures, the localized influence of the interaction of outer-layer horizontal and inner-layer vertical motions on the Reynolds stress is not insignificant.

  • 出版日期2011-9