摘要

A Hermite reproducing kernel Galerkin meshfree approach is proposed for buckling analysis of thin plates. This approach employs the Hermite reproducing kernel meshfree approximation that incorporates both the deflectional and rotational nodal variables into the approximation of the plate deflection and the C-1 continuous approximation requirement for the Galerkin analysis of thin plates can be easily achieved herein. The strain smoothing operation is consistently introduced to construct the smoothed rotation and curvature fields which appear in the weak form governing the thin plate buckling. The domain integration of the weak form is carried out by the method of sub-domain stabilized conforming integration with the smoothed measures of rotation and curvature, as leads to an efficient discrete meshfree formulation for the eigenvalue problem of thin plate buckling. A series of benchmark buckling problems are presented to assess the proposed algorithm and the results uniformly demonstrate the present approach is very effective and it performs superiorly compared to the conventional Galerkin meshfree formulations whose domain integration are performed by Gauss quadrature rules.