摘要

The deformation in granular material under loading conditions is a problem of great interest currently. In this paper, the micro-mechanism of the localized deformations in stochastically distributed granular materials is investigated based on the modified distinct element method under the plane strain conditions, and the influences of the confining pressure, the initial void ratio and the friction coefficient on the localized deformation and the stability of granular materials are also studied. It is concluded, based on the numerical simulation testing, that two crossed shear sliding planes may occur inside the granular assembly, and deformation patterns vary with the increasing of transverse strain. These conclusions are in good agreement with the present experimental results. By tangential velocity profiles along the direction normal to the two shear sliding planes, it can be found that there are two different shear deformation patterns: one is the fluid-like shear mode and the other is the solid-like shear mode. At last, the influences of various material parameters or factors on localized deformation features and patterns of granular materials are discussed in detail.