摘要

Herein, we developed an automated and flexible system for performing miniaturized liquid liquid reactions and assays in the femtoliter to picoliter range, by combining the contact printing and the droplet-based microfluidics techniques. The system mainly consisted of solid pins and an oil-covered hydrophilic micropillar array chip fixed on an automated x-y-z translation stage. A novel droplet manipulation mode called "dipping-depositing-moving" (DDM) was proposed, which was based on the programmable combination of three basic operations, dipping liquids and depositing liquids with the solid pins and moving the two-dimensional oil-covered hydrophilic pillar microchip. With the DDM mode, flexible generation and manipulation of small droplets with volumes down to 179 IL could be achieved. For overcoming the scale phenomenon specially appeared in picoliter-scale droplets, we used a design of water moat to protect the femtoliter to picoliter droplets from volume loss through the cover oil during the droplet generation, manipulation, reaction and assay processes. Moreover, we also developed a precise quantitative method, quantitative droplet dilution method, to accurately measure the volumes of femtoliter to picoliter droplets. To demonstrate its feasibility and adaptability, we applied the present system in the determination of kinetics parameter for matrix metalloproteinases (MMP-9) in 1.81 pL reactors and the measurement the activity of beta-galactosidase in single cells (HepG2 cells) in picoliter droplet array. The ultrasmall volumes of the droplet reactors avoided the excessive dilution to the reaction solutions and enabled the highly sensitive measurement of enzyme activity in the single cell level.