摘要

Applying an active intravascular MR catheter device that allows signal transmission from the catheter tip requires special means to avoid radiofrequency-induced heating. This article presents a novel, miniaturized all-optical active MR probe to use with real-time MRI in minimally invasive interventions for catheter guidance and intravascular imaging. An optical link transmits the received MR signals from the catheter tip to the MR receiver with inherently radiofrequency-safe optical fibers. Furthermore, power is supplied optically to the transmitter as well. The complete integration into a small tube of 6-Fr (2-mm diameter) size with a 7-Fr (2.33-mm diameter) rigid tubing was realized using chip components for the optical modulator and a novel miniaturized optical bench fabricated from silicon substrates with 3D self-aligning structures for fiber integration. In MRI phantom measurements, projection-based tip tracking and high-resolution imaging were successfully performed with the optical link inside a 1.5-T MRI scanner. Images were obtained in a homogeneous phantom liquid, and first pictures were acquired from inside a kiwi that demonstrates the potential of the MR-safe optical link. The signal-to-noise ratio has significantly improved compared with former systems, and it is demonstrated that the novel optical link exhibits a signal-to-noise ratio comparable to a direct electrical link. Magn Reson Med, 2011.

  • 出版日期2012-1