摘要

A novel electrochemiluminescent (ECL) method for highly sensitive detection of gene mutations was designed based on the amplification strategy of dual-functional aluminum(III). A film composed of nafion and polyaniline (Nafion-PANI) was placed onto glassy carbon electrode (GCE) in order to improve conductivity and stability, and then cadmium sulfide quantum dots (CdS QDs) were attached as an ECL label. Al(III) was introduced in order to enhance the ECL signal intensity of the CdS QDs by filling the surface electronic defects of CdS QDs. The Al(III) ions also assist by improving sensitivity by promoting the electron transfer at the GCE and by retaining plenty of single-stranded DNA (ssDNA). The ECL is generated at typically -1.5 V in the presence of containing K2S2O8. Compared to conventional ECL based DNA biosensors, the one described here -based on the use of dually functional Al(III) ions -enables ssDNA to be detected in the 1 f. to 10 nM concentration range, with a 6 f. detection limit. This method was applied to the quantitation of target ssDNA with different mismatching status in human serum. In our perception, it represents a highly attractive tool for the detection of ssDNA and has a particular potential in the diagnosis of hereditary diseases.

全文