摘要

The complex dynamics of HIV transmission and subsequent progression to AIDS make the mathematical analysis untraceable and problematic. In this paper, we develop an extended CA simulation model to study the dynamical behaviors of HIV/AIDS transmission. The model incorporates heterogeneity into agents' behaviors. Agents have various attributes such as infectivity and susceptibility, varying degrees of influence on their neighbors and different mobilities. Additional, we divide the post-infection process of AIDS disease into several sub-stages in order to facilitate the study of the dynamics in different development stages of epidemics. These features make the dynamics more complicated. We find that the epidemic in our model can generally end up in one of the two states: extinction and persistence, which is consistent with other researchers' work. Higher population density, higher mobility, higher number of infection source, and greater neighborhood are more likely to result in high levels of infections and in persistence. Finally, we show in four-class agent scenario, variation in susceptibility (or infectivity) and various fractions of four classes also complicates the dynamics, and some of the results are contradictory and needed for further research.