Microcystin-LR degradation utilizing a novel effective indigenous bacterial community YFMCD1 from Lake Taihu

作者:Yang, Fei*; Massey, Isaac Yaw; Guo, Jian; Yang, Shu; Pu, Yuepu; Zeng, Weiming; Tan, Hongzhuan*
来源:Journal of Toxicology and Environmental Health Part A: Current Issues , 2018, 81(7): 184-193.
DOI:10.1080/15287394.2018.1423803

摘要

Microcystins (MC) produced by species of cyanobacteria including Microcystis, Anabaena, and Aphanizomenon are a group of monocyclic hepatotoxins posing serious threat to public health. Microcystin-LR (MC-LR) is the most toxic and frequently encountered microcystin variant in the environment, and thus removal of this toxin using bacteria was shown to be a reliable, efficient, and cost-effective method that avoids utilization of chemicals that may produce potentially harmful by-products. The aim of this study was to determine whether a novel indigenous bacterial community designated YFMCD1 was effective in destroying MC. In addition, the influence of environmental factors such as temperature, MC concentration, and pH was examined on the effectiveness of YFMCD1 to degrade MC-LR. MC-degradation products were identified by high performance liquid chromatography coupled with an ultra-high resolution LTQ Orbitrap Velos Pro ETD mass spectrometry equipped with electrospray ionization interface (HPLC-ESI-MS). MC-LR underwent maximal degradation at rate of 0.5 mu g/ml/hr with YFMCD1 containing Klebsiella sp. termed YFMCD1-1 or Stenotrophomonas sp. termed YFMCD1-2. Moreover, Adda (3-amino-9-methoxy-2, 6, 8-trimethyl-10-phenyldeca-4, 6-dienoic acid) is a constituent within the MC-LR molecule found to be responsible for biological activity expression and critical for MC-induced toxicity, which is also degraded by YFMCD1. The results showed that YFMCD1 effectively degraded MC-LR. The degradation rate was significantly affected by temperature, pH, and MC-LR concentrations. Data indicate that this bacterial community may prove beneficial in bioremediation of lakes containing MC.