摘要

Although flexibility and transparency are considered advantages of organic electronic devices along with low processing cost and the possibility of large-area production, high operating voltages and metallic contacts are obstacles to their application in real electronic products. In this work, flexible and transparent organic complementary inverters that can be operated With low voltage were fabricated on a plastic substrate. Two different air-stable organic semiconductors, fluorinated copper phthalocyanine and pentacene, are used for n-type and p-type transistors, respectively. An ITO gate electrode was deposited by sputtering, and a hybrid dielectric layer with a thin Al2O3 layer and self-assembled monolayers (SAMs) was fabricated to reduce the operation voltage. To confirm the properties of the hybrid dielectric layer, the capacitance and gate leakage current were measured. Then, source and drain electrodes were formed from gold or ITO specifically for fully transparent devices. For the ITO electrodes, a MoO3 interlayer was incorporated between the pentacene and ITO to reduce the contact resistance caused by mismatch of workfunction. Finally, we evaluated the low-voltage operation of the flexible organic inverters and the fully transparent device through transmittance measurement.

  • 出版日期2015-3