Glioblastoma invasion and cooption depend on IRE1 alpha endoribonuclease activity

作者:Jabouille Arnaud; Delugin Maylis; Pineau Raphael; Dubrac Alexandre; Soulet Fabienne; Lhomond Stephanie; Pallares Lupon Nestor; Prats Herve; Bikfalvi Andreas; Chevet Eric; Touriol Christian; Moenner Michel*
来源:Oncotarget, 2015, 6(28): 24922-24934.
DOI:10.18632/oncotarget.4679

摘要

IRE1 alpha is an endoplasmic reticulum (ER)-resident transmembrane signaling protein and a cellular stress sensor. The protein harbors a cytosolic dual kinase/endoribonuclease activity required for adaptive responses to micro-environmental changes. In an orthotopic xenograft model of human glioma, invalidation of IRE1 alpha RNase or/and kinase activities generated tumors with remarkably distinct phenotypes. Contrasting with the extensive angiogenesis observed in tumors derived from control cells, the double kinase/RNase invalidation reprogrammed mesenchymal differentiation of cancer cells and produced avascular and infiltrative glioblastomas with blood vessel co-option. In comparison, selective invalidation of IRE1 alpha RNase did not compromise tumor angiogenesis but still elicited invasive features and vessel co-option. In vitro, IRE1 alpha RNase deficient cells were also endowed with a higher ability to migrate. Constitutive activation of both enzymes led to wild-type-like lesions. The presence of IRE1 alpha, but not its RNase activity, is therefore required for glioblastoma neovascularization, whereas invasion results only from RNase inhibition. In this model, two key mechanisms of tumor progression and cancer cell survival are functionally linked to IRE1 alpha.

  • 出版日期2015-9-22