Dihydromethysticin from kava blocks tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis and differentially reduces DNA damage in A/J mice

作者:Narayanapillai Sreekanth C; Balbo Silvia; Leitzman Pablo; Grill Alex E; Upadhyaya Pramod; Shaik Ahmad Ali; Zhou Bo; O' Sullivan M Gerard; Peterson Lisa A; Lu Junxuan; Hecht Stephen S; Xing Chengguo*
来源:Carcinogenesis, 2014, 35(10): 2365-2372.
DOI:10.1093/carcin/bgu149

摘要

We have previously shown that kava and its flavokavain-free Fraction B completely blocked 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice with a preferential reduction in NNK-induced O-6-methylguanine (O-6-mG). In this study, we first identified natural (+)-dihydromethysticin (DHM) as a lead compound through evaluating the in vivo efficacy of five major compounds in Fraction B on reducing O-6-mG in lung tissues. (+)-DHM demonstrated outstanding chemopreventive activity against NNK-induced lung tumorigenesis in A/J mice with 97% reduction of adenoma multiplicity at a dose of 0.05 mg/g of diet (50 ppm). Synthetic (+/-)-DHM was equally effective as the natural (+)-DHM in these bioassays while a structurally similar analog, (+)-dihydrokavain (DHK), was completely inactive, revealing a sharp in vivo structure-activity relationship. Analyses of an expanded panel of NNK-induced DNA adducts revealed that DHM reduced a subset of DNA adducts in lung tissues derived from 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL, the active metabolite of NNK). Preliminary 17-week safety studies of DHM in A/J mice at a dose of 0.5 mg/g of diet (at least 10x its minimum effective dose) revealed no adverse effects, suggesting that DHM is likely free of kava%26apos;s hepatotoxic risk. These results demonstrate the outstanding efficacy and promising safety margin of DHM in preventing NNK-induced lung tumorigenesis in A/J mice, with a unique mechanism of action and high target specificity.

  • 出版日期2014-10