摘要

In the conventional bifurcation and strain localization analyses of geomaterials, the inertia forces are generally ignored, based on the quasistatic equilibrium equation. Even though a great deal of literature exists on dynamic strain localization analyses, information on acceleration generation during the formation of shear bands has not been emphasized. Inspired by the acoustic emission phenomenon in laboratory tests and the seismic acceleration related to the slippage of faults, a dynamic soil water coupled strain localization analysis is performed in the present paper on a saturated rectangular clay specimen subjected to constant cell pressure under plane strain conditions, employing the SYS Cam clay model as the elasto-plastic constitutive model for the soil skeleton. An initial geometrical imperfection was introduced to the specimen to trigger one single shear band, and the following results were found: (1) Two types of oscillation occurred within the specimen during acceleration when the specimen was subjected to compression deformation at a constant rate, namely, (a) one caused by the sudden external compression and (b) the second induced by the formation of strain localization/a shear band. With the occurrence of the shear band, if, for example, the vertical rate was equivalent to about 10 cm/s, the accelerations that occurred within the specimen were in the order of several thousand gal, which is similar to those measured during earthquakes; (2) The effects of the time increment, the mesh division, the initial confining pressure, the OCR and the stress-control loading on the generated acceleration in (b) were investigated in detail. It was found that under stress control, even though the formation of the shear band was similar to that under displacement control, the induced acceleration behaved quite differently.

  • 出版日期2013-10