摘要

Some salts have been proven to inhibit bubble coalescence above a certain concentration called the transition concentration. The transition concentration of salts has been investigated and determined by using different techniques. Different mechanisms have also been proposed to explain the stabilizing effect of salts on bubble coalescence. However, as yet there is no consensus on a mechanism which can explain the stabilizing effect of all inhibiting salts. This paper critically reviews the experimental techniques and mechanisms for the coalescence of bubbles in saline solutions. The transition concentrations of NaCl, as the most popularly used salt, determined by using different techniques such as bubble swarm, bubble pairs, and thin liquid film micro-interferometry were analyzed and compared. For a consistent comparison, the concept of TC95 was defined as a salt concentration at which the "percentage coalescence" of bubbles reduces by 95% relative to the highest (100% in pure water) and lowest (in high-salt concentration) levels. The results show a linear relationship between the TC95 of NaCl and the reciprocal of the square root of the bubble radius. This relationship holds despite different experimental techniques, salt purities and bubble approach speeds, and highlights the importance of the bubble size in bubble coalescence. The available theoretical models for inhibiting effect of salts have also been reviewed. The failure of these models in predicting the salt transition concentration commands further theoretical development for a better understanding of bubble coalescence in salt solutions.

  • 出版日期2015-8